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The notion of developing statistical methods in machine learning which are robust to adversarial per-
turbations in the underlying data has been the subject of increasing interest in recent years. A com-
mon feature of this work is that the adversarial robustification often corresponds exactly to regularization
methods which appear as a loss function plus a penalty. In this paper we deepen and extend the un-
derstanding of the connection between robustification and regularization (as achieved by penalization) in
regression problems. Specifically,

(a) In the context of linear regression, we characterize precisely under which conditions on the model of
uncertainty used and on the loss function penalties robustification and regularization are equivalent.
(b) We extend the characterization of robustification and regularization to matrix regression problems

(matrix completion and Principal Component Analysis).
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1. Introduction

The development of predictive methods that perform well in
the face of uncertainty is at the core of modern machine learn-
ing and statistical practice. Indeed, the notion of regularization—
loosely speaking, a means of controlling the ability of a statisti-
cal model to generalize to new settings by trading off with the
model’s complexity— is at the very heart of such work (Hastie,
Tibshirani, & Friedman, 2009). Corresponding regularized statistical
methods, such as the Lasso for linear regression (Tibshirani, 1996)
and nuclear-norm-based approaches to matrix completion (Candeés
& Recht, 2012; Recht, Fazel, & Parrilo, 2010), are now ubiquitous
and have seen widespread success in practice.

In parallel to the development of such regularization methods,
it has been shown in the field of robust optimization that under
certain conditions these regularized problems result from the need
to immunize the statistical problem against adversarial perturba-
tions in the data (Ben-Tal, Ghaoui, & Nemirovski, 2009; Carama-
nis, Mannor, & Xu, 2011; Ghaoui & Lebret, 1997; Xu, Caramanis, &
Mannor, 2010). Such a robustification offers a different perspective
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on regularization methods by identifying which adversarial pertur-
bations the model is protected against. Conversely, this can help
to inform statistical modeling decisions by identifying potential
choices of regularizers. Further, this connection between regular-
ization and robustification offers the potential to use sophisticated
data-driven methods in robust optimization (Bertsimas, Gupta, &
Kallus, 2013; Tulabandhula & Rudin, 2014) to design regularizers
in a principled fashion.

With the continuing growth of the adversarial viewpoint in ma-
chine learning (e.g. the advent of new deep learning methodologies
such as generative adversarial networks (Goodfellow et al., 2014a;
Goodfellow, Shlens, & Szegedy, 2014b; Shaham, Yamada, & Negah-
ban, 2015)), it is becoming increasingly important to better under-
stand the connection between robustification and regularization.
Our goal in this paper is to shed new light on this relationship
by focusing in particular on linear and matrix regression problems.
Specifically, our contributions include:

1. In the context of linear regression we demonstrate that in
general such a robustification procedure is not equivalent to
regularization (via penalization). We characterize precisely
under which conditions on the model of uncertainty used
and on the loss function penalties one has that robustifica-
tion is equivalent to regularization.

2. We break new ground by considering problems in the ma-
trix setting, such as matrix completion and Principal Com-
ponent Analysis (PCA). We show that the nuclear norm, a
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Table 1
Matrix norms on A € R™",

Name Notation  Definition Description

1/p
p-Frobenius Fp <Z \A,jl”) Entrywise ¢, norm
ij
p-spectral ap [l (A)lp ¢, norm on the singular values
(Schatten)
A
Induced (h, g) m:x g}E(Jﬁﬁ;) Induced by norms g, h

popular penalty function used throughout this setting, arises
directly through robustification. As with the case of vector
regression, we characterize under which conditions on the
model of uncertainty there is equivalence of robustification
and regularization in the matrix setting.

The structure of the paper is as follows. In Section 2, we re-
view background on norms and consider robustification and regu-
larization in the context of linear regression, focusing both on their
equivalence and non-equivalence. In Section 3, we turn our atten-
tion to regression with underlying matrix variables, considering in
depth both matrix completion and PCA. In Section 4, we include
some concluding remarks.

2. A robust perspective of linear regression
2.1. Norms and their duals

In this section, we introduce the necessary background on
norms which we will use to address the equivalence of robustifi-
cation and regularization in the context of linear regression. Given
a vector space V € R" we say that || - || : V — R is a norm if for all
vvweVand x €R

1. If ||v]| =0, thenv=0,
2. ||av|| = |a||lv] (absolute homogeneity), and
3. |lv+w| < |lv|| + [lw]| (triangle inequality).

If ||-]| satisfies conditions 2 and 3, but not 1, we call it a semi-

norm. For a norm |-|| on R" we define its dual, denoted |||+, to
be
x/
‘= max ;——,
181 := max 1o

where X’ denotes the transpose of x (and therefore X' B is the usual
inner product). For example, the ¢, norms ||Bll, := (Z;|8;[P )P for
p € [1, 00) and ||B]lo := max;|Bi| satisfy a well-known duality re-
lation: ¢p+ is dual to ¢p, where p* € [1, co] with 1/p + 1/p* = 1. We
call p* the conjugate of p. More generally for matrix norms’ ||| on
R™*" the dual is defined analogously:

. (A A)
Al := nax e
where A € R™" and (.-) denotes the trace inner product:
(A, A) =Tr(A’A), where A’ denotes the transpose of A. We note
that the dual of the dual norm is the original norm (Boyd & Van-
denberghe, 2004).

Three widely used choices for matrix norms (see Horn & John-
son, 2013) are Frobenius, spectral, and induced norms. The defini-
tions for these norms are given below for A € R™" and summa-
rized in Table 1 for convenient reference.

1 We treat a matrix norm as any norm on R™" which satisfies the three con-
ditions of a usual vector norm, although some authors reserve the term “matrix
norm” for a norm on R™*" which also satisfies a submultiplicativity condition (see
Horn and Johnson, 2013, pg. 341).

1. The p-Frobenius norm, denoted || - ||g,, is the entrywise ¢p
norm on the entries of A:

1/p

A, = Z|Aij|p
ij

Analogous to before, Fj« is dual to Fp, where 1/p+1/p* = 1.
2. The p-spectral (Schatten) norm, denoted | - ||o,. is the £p
norm on the singular values of the matrix A:

[Allg, = llw(A)p.

where u(A) denotes the vector containing the singular val-
ues of A. Again, op+ is dual to o p.

3. Finally we consider the class of induced norms. If g : R™ —
R and h:R" — R are norms, then we define the induced
norm ||-[|(p, g) as

g(AB)
h(B)

An important special case occurs when g=¢p and h = ¢q.
When such norms are used, (q, p) is used as shorthand to
denote (¢q, ¢p). Induced norms are sometimes referred to as
operator norms. We reserve the term operator norm for the
induced norm (£3,¢3) = (2,2) = 0, Which measures the
largest singular value.

A 1= max
1&g = ma

2.2. Uncertain regression

We now turn our attention to uncertain linear regression prob-
lems and regularization. The starting point for our discussion is the
standard problem

ming(y — XB),
ﬁE]R”

where y e R™ and X € R™" are data and g is some convex func-
tion, typically a norm. For example, g = ¢, is least squares, while
g =1¢1 is known as least absolute deviation (LAD). In favor of mod-
els which mitigate the effects of overfitting these are often re-
placed by the regularization problem

mﬂing(y— XB) + h(P),

where h: R" — R is some penalty function, typically taken to be
convex. This approach often aims to address overfitting by penal-
izing the complexity of the model, measured as h(8). (For a more
formal treatment using Hilbert space theory, (see Bauschke & Com-
bettes, 2011; Bousquet, Boucheron, & Lugosi, 2004). For example,
taking g = (% and h = ¢2, we recover the so-called regularized least
squares (RLS), also known as ridge regression (Hastie et al., 2009).
The choice of g = Z% and h = ¢; leads to Lasso, or least absolute
shrinkage and selection operator, introduced in Tibshirani (1996).
Lasso is often employed in scenarios where the solution 8 is de-
sired to be sparse, i.e., § has very few nonzero entries. Broadly
speaking, regularization can take much more general forms; for
our purposes, we restrict our attention to regularization that ap-
pears in the penalized form above.

In contrast to this approach, one may alternatively wish to re-
examine the nominal regression problem minﬂg(yfxﬂ) and in-
stead attempt to solve this taking into account adversarial noise in
the data matrix X. As in Ghaoui and Lebret (1997), Lewis (2002),
Lewis and Pang (2009), Ben-Tal et al. (2009), Xu et al. (2010), this
approach may take the form

mﬂin lefg(y_ X+ A)B), (1)

where the set &/ € R™" characterizes the user’s belief about
uncertainty on the data matrix X. This set ¢/ is known in the
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language of robust optimization (Ben-Tal et al., 2009; Bertsimas,
Brown, & Caramanis, 2011) as an uncertainty set and the inner
maximization problem maxa, £V — (X+ A)B) takes into account
the worst-case error (measured via g) over U. We call such a
procedure robustification because it attempts to immunize or
robustify the regression problem from structural uncertainty in
the data. Such an adversarial or “worst-case” procedure is one of
the key tenets of the area of robust optimization (Ben-Tal et al.,
2009; Bertsimas et al., 2011).

As noted in the introduction, the adversarial perspective offers
several attractive features. Let us first focus on settings when
robustification coincides with a regularization problem. In such
a case, the robustification identifies the adversarial perturbations
the model is protected against, which can in turn provide addi-
tional insight into the behavior of different regularizers. Further,
technical machinery developed for the construction of data-driven
uncertainty sets in robust optimization (Bertsimas et al., 2013;
Tulabandhula & Rudin, 2014) enables the potential for a princi-
pled framework for the design of regularization schemes, in turn
addressing a complex modeling decision encountered in practice.

Moreover, the adversarial approach is of interest in its own
right, even if robustification does not correspond directly to a reg-
ularization problem. This is evidenced in part by the burgeoning
success of generative adversarial networks and other methodolo-
gies in deep learning (Goodfellow et al., 2014a; Goodfellow et al.,
2014b; Shaham et al., 2015). Further, the worst-case approach often
leads to a more straightforward analysis of properties of estimators
(Xu et al., 2010) as well as algorithms for finding estimators (Ben-
Tal, Hazan, Koren, & Mannor, 2015).

Let us now return to the robustification problem. A natural
choice of an uncertainty set which gives rise to interpretability is
the set &/ = {A e R™": ||A| < A}, where ||-|| is some matrix norm
and A > 0. One can then write max, gy — (X+ A)p) as

max gy —XB)
st X=X <A

or the worst case error taken over all X sufficiently close to the
data matrix X. In what follows, if ||-|| is a norm or seminorm, then
we let ¢/ denote the ball of radius 2 in -1l

U ={A: Al <A}

For example, Ur,. Us and Uihg) denote uncertainty sets under the
norms Fp, op, and (h, g), respectively. We assume A > O fixed for
the remainder of the paper.

We briefly mention addressing uncertainty in y. Suppose that
we have a set V € R™ which captures some belief about the un-
certainty in y. If again we have an uncertainty set &/ € R™", we
may attempt to solve a problem of the form

mﬂin rglaxg(y+ - X+ A)P).
eV
Aeld

We can instead work with a new loss function g defined as
g(v) := maxg(v+ J).
dev
If g is convex, then so is g. In this way, we can work with the
problem in the form
min max gy — X+ A)B),
in max 8(y— X+ A)B)

where there is only uncertainty in X. Throughout the remainder of
this paper we will only consider such uncertainty.

Relation to robust statistics
There has been extensive work in the robust statistics commu-
nity on statistical methods which perform well in noisy, real-world

environments. As noted in Ben-Tal et al. (2009), the connection be-
tween robust optimization and robust statistics is not clear. We
do not put forth any connection here, but briefly describe the de-
velopment of robust statistics to appropriately contextualize our
work. Instead of modeling noise via a distributional perspective,
as is often the case in robust statistics, in this paper we choose to
model it in a deterministic way using uncertainty sets. For a com-
prehensive description of the theoretical developments in robust
statistics in the last half century, see the texts (Huber & Ronchetti,
2009; Rousseeuw, 1984) and the surveys (Hubert, Rousseeuw, &
Aelst, 2008; Morgenthaler, 2007).

A central aspect of work in robust statistics is the develop-
ment and use of a more general set of loss functions. (This is in
contrast to the robust optimization approach, which generally re-
sults in the same nominal loss function with a new penalty; see
Section 2.3 below.) For example, while least squares (the ¢, loss) is
known to perform well under Gaussian noise, it does not perform
well under other types of noise, such as contaminated Gaussian
noise. (Indeed, the Gaussian distribution was defined so that least
squares is the optimal method under Gaussian noise (Rousseeuw,
1984).) In contrast, a method like LAD regression (the ¢; loss) gen-
erally performs better than least squares with errors in y, but not
necessarily errors in the data matrix X.

A more general class of such methods is M-estimators as pro-
posed in Huber (1973) and since studied extensively (Huber &
Ronchetti, 2009; Rousseeuw & Leroy, 1987). However, M-estimators
lack desirable finite sample breakdown properties; in short, M-
estimators perform very poorly in recovering the loadings §* un-
der gross errors in the data (X, y). To address some of these
shortcomings, GM-estimators were introduced (Hampel, 1974; Hill,
1977; Mallows, 1975). Since these, many other estimators have
been proposed. One such method is least quantile of squares re-
gression (Rousseeuw, 1984) which has highly desirable robustness
properties. There has been significant interest in new robust sta-
tistical methods in recent years with the increasing availability of
large quantities of high-dimensional data, which often make re-
liable outlier detection difficult. For commentary on modern ap-
proaches to robust statistics, see (Bradic, Fan, & Wang, 2011; Fan,
Fan, & Barut, 2014; Hubert et al., 2008) and references therein.

Relation to error-in-variable models

Another class of statistical models which are particularly rel-
evant for the work contained herein are error-in-variable models
(Carroll, Ruppert, Stefanski, & Crainiceanu, 2006). One approach to
such a problem takes the form

min_g(y— X+ A)B) +P(A),
BeRrn, Ackmn
where P is a penalty function which takes into account the com-
plexity of possible perturbations A to the data matrix X. A canoni-
cal example of such a method is total least squares (Golub & Loan,
1980; Markovsky & Huffel, 2007), which can be written for fixed t
> 0 as

nﬂinn ly— X+ A)Bll2+TlAlf.

An equivalent way of writing such problems is, instead of pe-
nalized form, as constrained optimization problems. In particular,
the constrained version generically takes the form

min rrii_n gy—- X+ A)P), (2)
P(A)<n

where n > 0 is fixed. Under the representation in (2), the com-
parison with the robust optimization approach in (1) becomes
immediate. While the classical error-in-variables approach takes
an optimistic view on uncertainty in the data matrix X, and
finds loadings B on the new “corrected” data matrix X+ A, the
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minimax approach of (1) considers protections against adversarial
perturbations in the data which maximally increase the loss.

One of the advantages of the adversarial approach to error-
in-variables is that it enables a direct analysis of certain statis-
tical properties, such as asymptotic consistency of estimators (c.f.
Caramanis et al., 2011; Xu et al., 2010). In contrast, analyzing the
consistency of estimators attained by a model such as total least
squares is a complex issue (Kukush, Markovsky, & Huffel, 2005).

2.3. Equivalence of robustification and regularization

A natural question is when do the procedures of regulariza-
tion and robustification coincide. This problem was first studied
in Ghaoui and Lebret (1997) in the context of uncertain least
squares problems and has been extended to more general settings
in Caramanis et al. (2011); Xu et al. (2010) and most comprehen-
sively in Ben-Tal et al. (2009). In this section, we present settings
in which robustification is equivalent to regularization. When such
an equivalence holds, tools from robust optimization can be used
to analyze properties of the regularization problem (c.f. Caramanis
et al.,, 2011; Xu et al., 2010).

We begin with a general result on robustification under induced
seminorm uncertainty sets.

Theorem 1. If g: R™ — R is a seminorm which is not identically
zero and h : R" — R is a norm, then for any z c R™ and B € R"

max g(z+ AB) =g(z) + Ah(B),

€Ung
where Upng) = {A : |All(ng < A}

Proof. From the triangle inequality g(z+ AB) <g(z) +g(Ap) <
&(z) + Ah(B) for any A € U := U 5)- We next show that there ex-
ists some A U so that g(z+ Af) =g(z) + Ah(B). Let ve R" so
that v € argmaxp: y)—1 V', where h* is the dual norm of h. Note
in particular that v'8 = h(B) by the definition of the dual norm
h*. For now suppose that g(z) # 0. Define the rank one matrix
A= g7“'ijv/. Observe that

Mh(B) z) _g@ +2h(B)

g(z)=g(z) + Lh(B).

g(’“ng(“ 0 0

We next show that A e ¢/. Observe that for any x € R" that

-~ VX

8(AX) = g| —<z | = A[VX| = Ah(x)h*(v) = Ah(x),

(g(Z) )
where the final inequality follows by definition of the dual norm.
Hence A e U, as desired.

We now consider the case when g(z) = 0. Let uc R™ so that
g(u) =1 (because g is not identically zero there exists some u so
that g(u) > 0, and so by homogeneity of g we can take u so that
g(u) =1). Let v be as before. Now define A = Auv’. We observe
that

gz + AB) =gz +uv'B) < g(z) + AV Blg(u) = Lh(B).

Now, by the reverse triangle inequality,

gz+ AB) = g(AB) —g(z) = g(AB) = Ah(B),

and therefore g(z + Kﬂ) = Ah(B) = g(z) + Ah(B). The proof that
A € U is identical to the case when g(z) # 0. This completes the
proof. O

This result implies as a corollary known results on the con-
nection between robustification and regularization as found in Xu
et al. (2010), Ben-Tal et al. (2009), Caramanis et al. (2011) and ref-
erences therein.

Corollary 1 (Ben-Tal et al.,, 2009; Caramanis et al., 2011; Xu et al,,
2010). If p, q € [1, oo] then
min max [y — (X+ A)B|l, = min [ly — XBll, + AlIBllq-

B Aclgp B
In particular, for p = q = 2 we recover regularized least squares as a
robustification; likewise, for p =2 and q = 1 we recover the Lasso.”

Theorem 2 (Ben-Tal et al., 2009; Caramanis et al., 2011; Xu et al.,
2010). One has the following for any p, q € [1, oo]:

min max |y — (X+ A) =min|y-X +A .,
in max ly Blly = min ly ~XBll, + 2185

where p* is the conjugate of p. Similarly,

min Zne?{ij ly— X+ MBI = H}’}HHY*Xﬂ”z + 118l

Observe that regularized least squares arises again under all
uncertainty sets defined by the spectral norms oq when the loss
function is g =¢,. Now we continue with a remark on how Lasso
arises through regularization. See Xu et al. (2010) for comprehen-
sive work on the robustness and sparsity implications of Lasso as
interpreted through such a robustification considered in this paper.

Remark 1. As per Corollary 1 it is known that Lasso arises as uncer-
tain ¢, regression with uncertainty set U := Uy (Xu et al, 2010).
As with Theorem 1, one might argue that the ¢, penalizer arises as
an artifact of the model of uncertainty. We remark that one can de-
rive the set U as an induced uncertainty set defined using the “true”
non-convex penalty ¢q, where || Bllo := |{i: Bi# 0}|. To be precise, for
any p € [1, oo] and for T' = {B e R": ||B|| » < 1} we claim that

U = {A:max—”Aﬂ||2 5)»}
Bt IBllo

satisfies U = U'. This is summarized, with an additional representation
U" as used in Xu et al. (2010), in the following proposition.

Proposition 1. If U =Uyqy. U ={A:[|ABll2 <AlIBllo VIIBIp <
1} for an arbitrary p € [1, o], and U” = {A : || A; |l < A Vi}, where
A; is the ith column of A, thenUd =U’ =U".

Proof. We first show that ¢/ = /. Because ||| < ||B]lo for all B
R™ with ||8]|p < 1, we have that &/ < ¢’. Now suppose that A e ¢/’.
Then for any B € R", we have that

1882 = | 3" Bides| =3 1Al1Aall, =3 IAIA =Bl

2

where {e;}! ; is the standard orthonormal basis for R". Hence,
A e U and therefore ¢’ € U. Combining with the previous direc-
tion gives U = U’.

We now prove that ¢/ = ¢”. That &” C U is essentially obvi-
ous; U < U follows by considering B < {e;}" ,. This completes the
proof. O

This proposition implies that ¢ ; arises from the robustification
setting without directly appealing to standard convexity arguments
for why ¢; should be used to replace ¢y (which use the fact that
¢7 is the so-called convex envelope of ¢y on [-1,1]", see e.g. Boyd
and Vandenberghe (2004).

In light of the above discussion, it is not difficult to show that
other Lasso-like methods can also be expressed as an adversarial

2 Strictly speaking, we recover equivalent problems to regularized least squares
and Lasso, respectively. We take the usual convention and overlook this technicality
(see Ben-Tal et al., 2009 for a discussion). For completeness, we note that one can
work directly with the true é% loss function, although at the cost of requiring more
complicated uncertainty sets to recover equivalence results.
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robustification, supporting the flexibility and versatility of such an
approach. One such example is the elastic net (De Mol, De Vito,
& Rosasco, 2009; Mosci, Rosasco, Santoro, Verri, & Villa, 2010; Zou
& Hastie, 2005), a hybridized version of ridge regression and the
Lasso. An equivalent representation of the elastic net is as fol-
lows:

m}}n ly —XBll2+ Al + wlBll2.

As per Theorem 2, this can be written exactly as
min max |y—- X+ A+ A)B|-.
B AA":

IIA,\IFWS)»

1A g <
Under this interpretation, we see that A and u directly control the
tradeoff between two different types of perturbations: “feature-
wise” perturbations A (controlled via A and the F,, norm) and
“global” perturbations A’ (controlled via n and the F, norm).

We conclude this section with another example of when robus-
tification is equivalent to regularization for the case of LAD (¢7)
and maximum absolute deviation (¢,) regression under row-wise
uncertainty.

Theorem 3 (Xu et al., 2010). Fix q € [1, oo] and let U = {A : ||§;llq =
A Vi}, where §; is the ith row of A € R™™, Then

H},}nnAlg; ly— X+ A)Bl1 = rr}gm ly — XBll1 +mA|Bllg-

and

mﬂm max ly— X+ A)Bll« = mﬂm ly — XBllo +21IBllg-

For completeness, we note that the uncertainty set ¢/ = {A :
18]l ¢ < A Vi} considered in Theorem 3 is actually an induced un-
certainty set, namely, & = U (g oc)-

2.4. Non-equivalence of robustification and regularization

In contrast to previous work studying robustification for regres-
sion, which primarily addresses tractability of solving the new un-
certain problem (Ben-Tal et al., 2009) or the implications for Lasso
(Xu et al., 2010), we instead focus our attention on characterization
of the equivalence between robustification and regularization. We
begin with a regularization upper bound on robustification prob-
lems.

Proposition 2. Let ¢/ < R™*" be any non-empty, compact set and g :
R™ — R a seminorm. Then there exists some seminorm h : R" — R so
that for any z ¢ R™, B e R",

maxg(z+ Ap) < g(z) +h(B),

Aeld

with equality when z = 0.

Proof. Let i : R" — R be defined as

h(B) := maxg(Ap).
Ael

To show that h is a seminorm we must show it satisfies abso-
lute homogeneity and the triangle inequality. For any 8 € R" and
o €R,

h(aB) = maxg(A(aB)) = max «|g(AB) = Ial(HAlEa;g(Aﬂ))
la |h(B),

so absolute homogeneity is satisfied. Similarly, if 8,y € R,

h(B+y) = maxg(A(B+y)) < max [g(AB) +g(Ap)]
Aeu Aeu

(maxs(Ap) ) +(maxe(ay)).

Ae

IA

IA

and hence the triangle inequality is satisfied. Therefore, i is a
seminorm which satisfies the desired properties, completing the
proof. O

When equality is attained for all pairs (z, ) € R™ x R", we are
in the regime of the previous section, and we say that robustifi-
cation under / is equivalent to regularization under h. We now
discuss a variety of explicit settings in which regularization only
provides upper and lower bounds to the true robustified problem.

Fix p, q € [1, oo]. Consider the robust ¢, regression problem

min max ||ly— (X+ A ,
tin max |y — X+ A)Bll,

where Up, = {A e R™": ||A|lg, <A}. In the case when p=q we
saw earlier (Theorem 2) that one exactly recovers ¢, regression
with an ¢« penalty:

min max [ly — (X+ A)B|l, = min [y — XBl| , + A[|Bll -
B A<k, B

Let us now consider the case when p # q. We claim that regular-
ization (with h) is no longer equivalent to robustification (with )
unless p € {1, co}. Applying Proposition 2, one has for any z € R™
that

max ||z+ AB|lp < lzll, +h(B),
Ael,{gl

where h = MaxXAcyy, IIABIlp is a norm (when p=gq, this is pre-

cisely the ¢p- norm, multiplied by A). Here we can compute h. To
do this we first define a discrepancy function as follows:

Definition 1. For a, b € [1, o] define the discrepancy function
Sm(a, b) as

Om(a,b) := max{|luflqc:ueR™ |u|,=1}.

This discrepancy function is computable and well-known (see
e.g. Horn & Johnson, 2013):

ml/e-1b ifa<b

Om(a.b) = {1 ifa>b.

It satisfies 1 < §m(a, b) < m and §m(a, b) is continuous in a and b.
One has that §m(a,b) =8m (b,a) =1 if and only if a =b (so long
as m > 2). Using this, we now proceed with the theorem. The
proof applies basic tools from real analysis and is contained in
Appendix A.

Theorem 4.

(a) Forany zeR™ and B e R,

max ||z + ABllp < l|zllp + Adm (. ) [ Blla: - (3)

AEM[—;J

(b) When p e {1, oo}, there is equality in (3) for all (z, B).

(c) When p € (1, o) and p # q, for any B # 0 the set of z e R™
for which the inequality (3) holds at equality is a finite union
of one-dimensional subspaces (so long as m > 2). Hence, for
any 8 # 0 the inequality in (3) is strict for almost all z.

(d) For p € (1, oo), one has for all z < R™ and B € R" that

I8

Izllp +

A
— « <max ||z+ AB| p 4
5o 1Bl = maxliz+ AB, (4)
(e) For p € (1, o), the lower bound in (4) is best possible in the

sense that the gap can be arbitrarily small, ie., for any B e

R",

. A
inf (r@z Iz-+ ABly Izl - 5o IIﬂIIq*> ~o.
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Theorem 4 characterizes precisely when robustification under
U, is equivalent to regularization for the case of ¢, regression. In
particular, when p # g and p € (1, o0), the two are not equivalent,
and one only has that

rrgn||y—xﬂ||p+ X+ MBIy

_r
m (4, p)
< m;n ly—XBllp+28m(p. DI Bllg-

1Bllg- < min max [ly —
R A7)

Further, we have shown that these upper and lower bounds are
the best possible (Theorem 4, parts (c) and (e)). While ¢, regression
with uncertainty set Ur, for p # q and p € (1, oo) still has both
upper and lower bounds which correspond to regularization (with
different regularization parameters A  [A/8m(q, p), Adm(p. q) ]), we
emphasize that in this case there is no longer the direct connection
between the parameter garnering the magnitude of uncertainty (1)
and the parameter for regularization (A).

Example 1. As a concrete example, consider the implications of
Theorem 4 when p =2 and q = co. We have that

rrllgin ly — XBll2 + 211l

IA

min max [ly — (X+ A)B|l,
B Acly,

IA

mgn lly — XBllz + vmA|IBlls.

In this case, robustification is not equivalent to regularization. In
particular, in the regime where there are many data points (i.e. m
is large), the gap appearing between the different problems can be
quite large.

Let wus remark that in general, lower bounds on
maxa ., &+ AB) will depend on the structure of ¢/ and may not
exist (except for the trivial lower bound of g(z)) in some scenarios.
However, it is easy to show that if ¢/ is compact and zero is in the
interior of &/, then there exists some A (0, 1] so that

maxg(z+ AB) = g(2) + Lh(B).

Before proceeding with other choices of uncertainty sets, it is
important to make a further distinction about the general non-
equivalence of robustification and regularization as presented in
Theorem 4. In particular, it is simple to construct examples (see
Appendix B) which imply the following strong existential result:

Theorem 5. In a setting when robustification and regularization are
not equivalent, it is possible for the two problems to have different
optimal solutions. In particular,

B e argminmaxg(y — X+ A)B)
B Aeld

is not necessarily a solution of
ming(y - XB) + +h(B)
for any > 0, and vice versa.

As a result, when robustification and regularization do not coin-
cide, they can induce structurally distinct solutions. In other words,
the regularization path (as A € (0, c0) varies) and the robustifica-
tion path (as the radius A € (0, co) of U varies) can be different.

We now proceed to analyze another setting in which robustifi-
cation is not equivalent to regularization. The setting, in line with
Theorem 2, is ¢p regression under spectral uncertainty sets Us,. As
per Theorem 2, one has that

min max [y — (X+ A)B|l; = min [ly — XBll2 + 2l Bll>
B Aclo, B

for any q € [1, oo]. This result on the “universality” of RLS under a
variety of uncertainty sets relies on the fact that the ¢, norm un-
derlies spectral decompositions; namely, one can write any matrix

X as Y_; piuv;, where {y;}; are the singular values of X, {u;}; and
{v;}; are the left and right singular vectors of X, respectively, and
lluill2 = [Ivill2 =1 for all i.

A natural question is what happens when the loss function ¢;, a
modeling choice, is replaced by ¢p, where p € [1, co]. We claim that
for p¢{1, 2, oo}, robustification under s, is no longer equivalent
to regularization. In light of Theorem 4 this is not difficult to prove.
We find that the choice of q € [1, oo], as before, is inconsequential.
We summarize this in the following proposition:

Proposition 3. For any z ¢ R™ and B € R",

max lz+ ABIlp < l|zll, + Adm (p. 2) [ Bll2- (5)

In particular, if p € {1, 2, oo}, there is equality in (5) for all (z, B).
If p¢{1, 2, oo}, then for any B # 0 the inequality in (5) is strict for
almost all z (when m > 2). Further, for p & {1, 2, oo} one has the lower
bound

A
Zlp + —— <max ||z+ AB| p,
llzll» 52 D) IBlI2 X Il Bli»

whose gap is arbitrarily small for all B.

Proof. This result is Theorem 4 in disguise. This follows by noting
that

max ||z+ AB|l, = max|lz+ AB| ,
Aclog Aclr,

and directly applying the preceding results. O

We now consider a third setting for ¢, regression, this time
subject to uncertainty /(g n; this is a generalized version of the
problems considered in Theorems 1 and 3. From Theorem 1 we
know that if p =r, then

mﬁm max ||y — (X+A)ﬁl|p—mm|ly XBllp+ 2Bl

Ay

Similarly, as per Theorem 3, when r = oo and p € {1, oo},

mﬂm AlgiX)Ily (X+A)ﬂllp=mm ly—XBIl p+A8m(p. )| Bllg.
Given these results, it is natural to inquire what happens for more
general choices of induced uncertainty set U . As before with
Theorem 4, we have a complete characterization of the equivalence
of robustification and regularization for ¢, regression with uncer-
tainty set U

Proposition 4. For any z < R™ and B € R",

max [|z+ ABlly < llzllp+Adm(p. 1) I Bllg- (6)
AEM(Q.H

In particular, if p € {1, 1, oo}, there is equality in (5) for all (z, B). If p
€ (1, o0) and p # r, then for any B # 0 the inequality in (6) is strict

for almost all z (when m > 2). Further, for p € (1, co) with p # r one
has the lower bound

IIﬂllqumax lz+ ABIlp.

llzll, +
P 8 ( Uq.r
whose gap is arbitrarily small for all B.

Proof. The proof follows the argument given in the proof of
Theorem 4. Here we simply note that now one uses the fact that

max [|lz+ A, =

max |lz+u]p.
Acliqn llull-<AliBllq

O

We summarize all of the results on linear regression in Table 2.
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Table 2

Summary of equivalencies for robustification with uncertainty set ¢/ and regular-
ization with penalty h, where h is as given in Proposition 2. Here by equivalence
we mean that for all ze R™ and B € R, max ., g(z+ B) = g(z) + h(B). where g is
the loss function, i.e., the upper bound h is also a lower bound. Here &, is as in
Theorem 4. Throughout p, q € [1, o] and m > 2. Here §; denotes the ith row of A.

Loss function Uncertainty set ¢ h(B) Equivalence if and

seminorm g Up.g) (h norm) Ah(B) only if always
tp U, Mm(p, 2)IBla pefl,2 o)

z,, U, Mm(p.)lBlle  pef{l g oo}

& Uan A8, DIIBN g pef{lr o0}

) (A ll8illg < Ay am'?||Bllg p e {1, oo}

3. On the equivalence of robustification and regularization in
matrix estimation problems

A substantial body of problems at the core of modern devel-
opments in statistical estimation involves underlying matrix vari-
ables. Two prominent examples which we consider here are matrix
completion and Principal Component Analysis (PCA). In both cases
we show that a common choice of the regularization problem cor-
responds exactly to a robustification of the nominal problem sub-
ject to uncertainty. In doing so we expand the existing knowledge
of robustification for vector regression to a novel and substantial
domain. We begin by reviewing these two problem classes before
introducing a simple model of uncertainty analogous to the vector
model of uncertainty.

3.1. Problem classes

In matrix completion problems one is given data Y;jeR for
(i,j)e Ec{1,...,m} x{1,...,n}. One problem of interest is rank-
constrained matrix completion

lT}(iI'l ”Y_ XHP(FZ)

(7)
s.t.  rank(X) <k,
where || - ||P(F2) denotes the projected 2—Frobenius seminorm,
namely,
172
2
”Z”P(Fz) = Z Z’j
(i,j)eE

Matrix completion problems appear in a wide variety of areas.
One well-known application is in the Netflix challenge (SIGKDD &
Netflix, 2007), where one wishes to predict user movie preferences
based on a very limited subset of given user ratings. Here rank-
constrained models are important in order to obtain parsimonious
descriptions of user preferences in terms of a limited number of
significant latent factors. The rank-constrained problem (7) is typ-
ically converted to a regularized form with rank replaced by the
nuclear norm o1 (the sum of singular values) to obtain the convex
problem

min [ = Xllpgs, + 41Xl

In what follows we show that this regularized problem can be
written as an uncertain version of a nominal problem minx ||Y —
Xllp¢e,-
Similarly to matrix completion, PCA typically takes the form
min Y - X]|
s.t.  rank(X) <k,

where ||-|| is either the usual Frobenius norm F, = 0y or the opera-
tor norm o «,, and Y € R™*", PCA arises naturally by assuming that
Y is observed as some low-rank matrix X plus noise: Y = X+E.
The solution to (8) is well-known to be a truncated singular value

(8)

decomposition which retains the k largest singular values (Eckart
& Young, 1936). PCA is popular for a variety of applications where
dimension reduction is desired.

A variant of PCA known as robust PCA (Candeés, Li, Ma, &
Wright, 2011) operates under the assumption that some entries of
Y may be grossly corrupted. Robust PCA assumes that Y =X+E,
where X is low rank and E is sparse (few nonzero entries). Under
this model robust PCA takes the form

min [[Y = Xlle, +A[|Xllo (9)

Here again we can interpret ||X|| 5, as a surrogate penalty for rank.
In the spirit of results from compressed sensing on exact ¢1 re-
covery, it is shown in Candés et al. (2011) that (9) can exactly re-
cover the true Xg and Ey assuming that the rank of X is small, Ey
is sufficiently sparse, and the eigenvectors of Xy are well-behaved
(see technical conditions contained therein). Below we derive ex-
plicit expressions for PCA subject to certain types of uncertainty;
in doing so we show that robust PCA does not correspond to an
adversarially robust version of minx [|Y — X|ls,, or miny [[Y — X[,
for any model of additive linear uncertainty.

Finally let us note that the results we consider here on robust
PCA are distinct from considerations in the robust statistics com-
munity on robust approaches to PCA. For results and commen-
tary on such methods, see Croux and Ruiz-Gazen (2005), Hubert,
Rousseeuw, and den Branden (2005), Salibian-Barrera, Aelst, and
Willems (2005), Hubert et al. (2008).

3.2. Models of uncertainty

For these two problem classes we now detail a model of uncer-
tainty. Our underlying problem is of the form miny ||Y — X||, where
Y is given data (possibly with some unknown entries). As with the
vector case, we do not concern ourselves with uncertainty in the
observed Y because modeling uncertainty in Y simply leads to a
different choice of loss function. To be precise, if V € R™" and g
is convex loss function then

g2Y-X) :=maxg((Y+ A) - X)
Aey

is a new convex loss function gof Y — X.
As in the vector case we assume a linear model of uncertainty
in the measurement of X:

V=X + (Y ADPXy |+
tk

where AW ¢ R™M. alternatively, in inner product notation, Yij=
Xij + (A Xy + €;;. This linear model is in direct analogy with the
model for vector regression taken earlier; now f is replaced by X,
and again we consider linear perturbations of the unknown regres-
sion variable.

This linear model of uncertainty captures a variety of possible
forms of uncertainty and accounts for possible interactions among
different entries of the matrix X. Note that in matrix notation, the
nominal problem becomes, subject to linear uncertainty in X,

min max [|[Y - X - AX)|],
X  Aeu

where here ¥/ is some collection of linear maps and A €U/ is de-
fined as [A(X)];j = (A™ X), where again A“) e R™*" (all linear
maps can be written in such a form). Note here the direct analogy
to the vector case, with the notation A(X) chosen for simplicity.
(For clarity, note that A is not itself a matrix, although one could
interpret it as a matrix in R™ * ™ albeit at a notational cost; we
avoid this here.)

We now outline some particular choices for uncertainty sets.
As with the vector case, one natural set is an induced uncertainty
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set. Precisely, if g, h: R™" — R are functions, then we define an
induced uncertainty set

Upg :={A:R™" >R™|A linear, g(A(X)) <Ah(X) VXeR™"}.

As before, when g and h are both norms, ;g is precisely a ball
of radius A in the induced norm
g(A(X))

h(X)
There are also many other possible choices of uncertainty sets.
These include the spectral uncertainty sets

Us, = {A : R™" = R™A linear, |Alls, <A},

A = max
1Allng = ma

where we interpret ||A||s, as the op norm of A in any, and hence
all, of its matrix representations. Other uncertainty sets are those
such as ¢ = {A : AW ey} where ¢ ¢ R™" are themselves
uncertainty sets. These last two models we will not examine in
depth here because they are often subsumed by the vector results
(note that these two uncertainty sets do not truly involve the ma-
trix structure of X, and can therefore be “vectorized”, reducing di-
rectly to vector results).

3.3. Basic results on equivalence

We now continue with some underlying theorems for our mod-
els of uncertainty. As a first step, we provide a proposition on
the spectral uncertainty sets. As noted above, this result is exactly
Theorem 2, and therefore we will not consider such uncertainty
sets for the remainder of the paper.

Proposition 5. For any q € [1, oo] and any Y € R™",

min max Y =X—AX)lr, = min [[Y = Xllr, +2[|X]lr,-

For what follows, we restrict our attention to induced uncer-
tainty sets. We begin with an analogous result to Theorem 1. The
proof is similar and therefore kept concise. Throughout we always
assume without loss of generality that if Y; is not known then
Y;j =0 (i.e., we set it to some arbitrary value).

Theorem 6. If g: R™" — R is a seminorm which is not indentically
zero and h : R™" — R is a norm, then

min max gY-X-AX))= m)gng(Y—X) + Ah(X).

X Aclpy
This theorem leads to an immediate corollary:

Corollary 2. For any norm | - || : R™" — R and any p € [1, oo]

mxin max |[|[Y-X-AX)| = m)%r1||Y—X|| +AliXllo,

Al |11

In the two sections which follow we study the implications of
Theorem 6 for matrix completion and PCA.

3.4. Robust matrix completion

We now proceed to apply Theorem 6 for the case of matrix
completion. Note that the projected Frobenius “norm” P(F;) is a
seminorm. Therefore, we arrive at the following corollary:

Corollary 3. For any p € [1, o] one has that

min  max ||Y—X—A(X)||P(E)=n}(in ||Y—XIIP(FZ)+)\||X||(,,,.

X Aeu
< (UP-P(FZ))

In particular, for p=1 one exactly recovers so-called nuclear norm
penalized matrix completion:

min ¥~ Xllpg, + A1Xl,

It is not difficult to show by modifying the proof of
Theorem 6 that even though U, F) gu(gp P))’ the following

holds:

Proposition 6. For any p € [1, oo] one has that

mxin max ||Y—X—A(X)||p(FZ):n}(in||Y—X||P(FZ)+A||XIIJp.

AEM(UP.F2>
In particular, for p =1 one exactly recovers nuclear norm penalized
matrix completion.

Let us briefly comment on the appearance of the nuclear norm
in Corollary 3 and Proposition 6. In light of Remark 1, it is not
surprising that such a penalty can be derived by working directly
with the rank function (nuclear norm is the convex envelope of
the rank function on the ball {X: ||X||,, <1}, which is why the
nuclear norm is typically used to replace rank (Fazel, 2002; Recht
et al.,, 2010). We detail this argument as before. For any p € [1, o]
and I' = {X e R™" . ||X||o, <1}, one can show that

1AX)lpg, _ k}. w0

U = { A linear : max
(01.P(R)) { xel'  rank(X)
Therefore, similar to the vector case with an underlying ¢ penalty
which becomes a Lasso ¢; penalty, rank leads to the nuclear norm
from the robustification setting without directly invoking convex-
ity.

3.5. Robust PCA

We now turn our attention to the implications of Theorem 6 for
PCA. We begin by noting robust analogues of miny ||Y — X|| under
the F, and o » norms. This is distinct from the considerations in
Caramanis et al. (2011) on robustness of PCA with respect to train-
ing and testing sets.

Corollary 4. For any p < [1, oo] one has that
min_max [|[Y =X~ AX)|5 = min||Y - X]|, + 4 [Xlls,

Aéu(npfz)
and

min max
X

U (op.0 o)

IY =X~ AX)llo,, = min Y = Xllo, +AlIXllo.

We continue by considering robust PCA as presented in Candés
et al. (2011). Suppose that ¢/ is some collection of linear maps A :
R™M — RMXM and ||-|| is some norm so that for any Y, X € R™*"

max [[Y — X — AX)[| = Y = X][|5 +AllX[lo,-
Al

It is easy to see that this implies || - || = || - ||, These observations,
combined with Theorem 6, imply the following:

Proposition 7. The problem (9) can be written as an uncertain ver-
sion of miny ||Y — X|| subject to additive, linear uncertainty in X if
and only if ||-|| is the 1-Frobenius norm Fj. In particular, (9) does
not arise as uncertain versions of PCA (using F, or o) under such a
model of uncertainty.

This result is not entirely surprising. This is because robust PCA
attempts to solve, based on its model of Y = X + E where X is low-
rank and E is sparse, a problem of the form

rr;(in [IY = X]|g, + A rank(X),
where ||A|lf, is the number of nonzero entries of A. In the usual
way, Fp and rank are replaced with surrogates F; and o 1, respec-

tively. Hence, (9) appears as a convex, regularized form of the
problem

min Y - Xl
X
s.t.  rank(X) < k.
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Again, as with matrix completion, it is possible to show that
(9) and uncertain forms of PCA with a nuclear norm penalty (as
appearing in Corollary 4) can be derived using the true choice of
penalizer, rank, instead of imposing an a priori assumption of a nu-
clear norm penalty. We summarize this, without proof, as follows:

Proposition 8. For any p € [1, oo] and any norm ||-||,

min @ max ||[Y-X-AX)| = min|]Y - X]|| + A X]l,,
Xel' Aelh rank ) Xel
where T' = {X e R™": ||X||, <1} and

aar - Al
Ur rank |1y = {A linear : R Tank(X) = At

3.6. Non-equivalence of robustification and regularization

As with vector regression it is not always the case that robus-
tification is equivalent to regularization in matrix estimation prob-
lems. For completeness we provide analogues here of the linear
regression results. We begin by stating results which follow over
with essentially identical proofs from the vector case; proofs are
not included here. Then we characterize precisely when another
plausible model of uncertainty leads to equivalence.

We begin with the analogue of Proposition 2.

Proposition 9. Let U/ C {linear maps A : R™" — R™M"} be any
non-empty, compact set and g:R™" — R a seminorm. Then there
exists some seminorm h : R™*" — R so that for any Z, X ¢ R™<",

maxg(Z+ A(X)) = g(@) + h(X),

with equality when Z = 0.

As before with Theorem 4 and Propositions 3 and 4, one can
now compute h for a variety of problems.

Proposition 10. For any Z, X e R™",

IZIle, + Xllr, < max|[|Z+ AX)|lF, (11)
AU,

_
Omn (q, P)
< 1Zllg, + A8mn (0, DX £, (12)

where ||Allg, is interpreted as the Fq norm on the matrix representa-
tion of A in the standard basis. In particular, if p # q and p € (1, co),
then for any X # 0 the upper bound in (12) is strict for almost all Z
(so long as mn > 2). Further, when p # q and p € (1, o), the gap in
the lower bound in (11) is arbitrarily small for all X.

Proposition 11. For any Z, X € R™",

A
1Z]l, + m IXllE, < glegz(q 1Z + A(X)”Fp (13)
< Zllr, + Amn (p, 2)IIX|| .- (14)

In particular, if p ¢{1, 2, oo}, then for all X # 0 the upper bound
in (14) is strict for almost all Z (so long as mn > 2). Further, if
pé{1, 2, oo}, the gap in the lower bound in (13) is arbitrarily small
for all X.

We now turn our attention to non-equivalencies which may
arise under different models of uncertainty instead of the general
matrix model of linear uncertainty which we have included here,
where

- i
[AX)i; =>" A X = (AW, X),
tk
with AW e Rm*n. Another plausible model of uncertainty is one

for which the jth column of A(X) only depends on X;, the jth col-
umn of X (or, for example, with columns replaced by rows). We

Table 3

Summary of equivalencies for robustification with uncertainty set ¢/ and regulariza-
tion with penalty h, where h is as given in Proposition 9. Here by equivalence we
mean that for all Z, X € R™", maxy, &Z+ X) = g(Z) + h(X), where g is the loss
function, i.e., the upper bound T is also a lower bound. Here &, is as in Theorem 4.
Throughout p, q € [1, oo] and mn > 2.

Loss function Uncertainty set h(X) Equivalence if and

seminorm g U(ng) (h norm) Ah(X) only if always
Fp U, ASmn(p, Z)HX”FZ p e {1, 2, o0}
Fp U, Admn(p, D IX Il g,- pe{l g oo}
Fp U in (15) (16) (p=q;Vj)or
with AY e U, p e {1, oo}

now examine such a model. In this setup, we now have n matrices
AY ¢ R™M and we define the linear map A so that the jth col-
umn of A(X) e R™", denoted [A(X)];, is [A(X)]; = AU)X]-, which
is simply matrix vector multiplication. Therefore,

AX) = [A"VX, A™X,]. (15)

For an example of where such a model of uncertainty may arise,
we consider matrix completion in the context of the Netflix prob-
lem. If one treats X; as user j's true ratings, then such a model
addresses uncertainty within a given user’s ratings, while not al-
lowing uncertainty to have cross-user effects. This model of uncer-
tainty does not rely on true matrix structure and therefore reduces
to earlier results on non-equivalence in vector regression. As an
example of such a reduction, we state the following proposition
characterizing equivalence. Again, this is a direct modification of
Theorem 4 and the proof we do not include here.

Proposition 12. For the model of uncertainty in (15) with AV ¢
Llpq]_ for j=1,....n, where g; € [1, o], one has for the problem

minmax ||Y — X — A(X) ||, that h is defined as
X Aeu P

1/p

’ (16)

h(X) = A D8R0, aplIX;
J

Further, under such a model of uncertainty, robustification is equiva-

lent to regularization with h if and only if p € {1, oo} or p = q; for all

j=1,...,n

While the case of matrix regression offers a large variety of pos-
sible models of uncertainty, we see again as with vector regression
that this variety inevitably leads to scenarios in which robustifica-
tion is no longer directly equivalent to regularization. We summa-
rize the conclusions of this section in Table 3.

4. Conclusion

In this work we have considered the robustification of a vari-
ety of problems from classical and modern statistical regression as
subject to data uncertainty. We have taken care to emphasize that
there is a fine line between this process of robustification and the
usual process of regularization, and that the two are not always
directly equivalent. While deepening this understanding we have
also extended this connection to new domains, such as in matrix
completion and PCA. In doing so, we have shown that the usual
regularization approaches to modern statistical regression do not
always coincide with an adversarial approach motivated by robust
optimization.
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Appendix A.

This appendix contains proofs and additional technical results
for the vector regression setting. We prove our results in the vector
setting, from which the primary results on matrices follow as a
direct corollary.

Proof of Theorem 4.

(a) We begin by proving the upper bound. Here we proceed
by showing that h above is precisely h(B) = A8 (p. @) ||Bll ¢
Now observe that for any A e U, »

1ABlp < m (. OIIABIlg < Sm(p. DI Allr, | Bllg-
< m (. OAIBllg-- (17)

The first inequality follows by the definition of the dis-
crepancy function §m,. The second inequality follows from
a well-known matrix inequality: [|ABllq < [|A|l5[IBllg- (this
follows from a simple application of Hélder’s inequality).
Now observe that in the chain of inequalities in (17), if one
takes any u € argmaxdm(p,q) and any v € argmax |y| =1 VB,
then A := Auv’/ €U, and ||K,B||p =68m(p, Al Bllg+. Hence,
h(B) = 8m(p. QA ||Bllg-- This proves the upper bound.

(b) We now prove that for p € {1, co} that one has equality
for all (z, B) e R™ x R", This follows an argument similar to
that needed for Theorem 6. First consider the case when
p=1. Fix ze R™. Again let uecargmaxdnm(1,q) and ve
argmaxy| 1 v/ . Without loss of generality we may assume
that sign(z;) = sign(y;) fori=1,..., m (one may change the
sign of entries of u and it is still in argmaxém(1,q)). Then
again we have A := Auv ¢ Ur, and

lz+ ABlly = llz+2uv'Bll = lz+ Al Bllg-ull:
= llzli+2 1Bl g lully =llzll1+A [ Bllg-m (1. @)

Hence, one has equality in the upper bound for p=1, as
claimed.

We now turn our attention to the case p = oo. Note that
8m(00,q) = 1 because ||z|| < |Izllq for all ze R™. Fix z e
R™, and again let v € argmax |, VB Let £ € {1,.. ., m} so
that |z¢| = |||l Define u = sign(z, )e; € R™, where e, is the
vector whose only nonzero entry is a 1 in the ¢th position.
Now observe that A := Auv’ € Ug, and

I+ ABllw = Iz +signz A Bllgell
=zl + M Bllg el o = l1Zlloo + 11 Bllq .

which proves equality in (3), as was to be shown.

(c) To proceed, we examine the case where p € (1, oo) and con-
sider for which (z, B) the inequality in (3) is strict. Fix B
# 0. For p € (1, o0) and y,z € R™, one has by Minkowski’s
inequality that |ly +z||p = |lyllp + llzllp if and only if one of
y or z is a non-negative scalar multiple of the other. To
have equality in (3), it must be that there exists some A ¢
argmaxacy, [|ABIl, for which |lz+ ABIlp = l|zllp + |ABIlp.
For any z # 0 this observation, combined with Minkowski’s
inequality, implies that

lAllr, =2, AB=uz for some i >0, and
IABlp = 18m (. D Bllq:-

The first and last equalities imply that ABe
AllBllg argmax §m(p, q). Note that argmaxdm(p,q) is fi-
nite whenever p # q and m > 2, a geometric property of ¢p
balls. Hence, taking any z which is not a scalar multiple of a
point in argmaxdm(p, q) implies by Minkowski’s inequality
that

max [|z+ ABlly < lIzllp + 25m(p. DI Bl ¢
EMFq

Hence, for any B # 0, the inequality in (3) is strict for all z
not in a finite union of one-dimensional subspaces, so long
aspe(1,00),p+#q and m> 2.

(d) We now prove the lower bound in (4). If z = 0 then there is

nothing to show, and therefore we assume z # 0. Let v e R"
so that

V € argmax ,;,_1V B-

Hence v/ = || B|l¢« by the definition of the dual norm. De-
fine A = ”;‘quv. Observe that A e Uf,. Further, note that

lzllg < 8m(q. p)lizll, by definition of &, and therefore
1/6m(q, p) < |lzllp /|z||q- Putting things together,

A1Bly Mzl 1Bl
et Sa = 17 g
)\_ —~
(1 + 2Bl ) s Ry,
Tl

< max [|z+ AB|l,.

A eMFq

This completes the proof of the lower bound.

(e) To conclude we prove that the gap in (4) can be made arbi-

trarily small for p € (1, co). We proceed in several steps. We
first prove that for any z # 0 that

. M Bllg 127" |l
lim (max loz + ABllp — ||otZ||p> = %,
Acity, llzll

(18)

where we use the shorthand zP-! to denote the vector in
R™ whose ith entry is |z;|P~'. Observe that

ax  laz+u ,

max |z + AB|l,= m
Ac, P lulla=21Blg

It is easy to argue that we may assume without any
loss of generality that ue argmax iy, <A |81l - lez +ul| p has

sign(u;) = sign(oz;), where

a>0

. 1,
sign(a) = {—1 a<0.

Therefore, we restrict our attention toz > 0,z # 0, and u >
0. For any u such that ||ul|q < A||Bll¢- and u > 0, note that

. . Z+u/ox — ||Z
lim [loz +ul| , - [lez]l, = lim llz+w/all, —lizllp
o—00

=00 1/a

T L e
a—0+ o

I I Ll
4e ;0 ST

We can now proceed to finish the claim in (18) (still restrict-
ing attention to z > 0 without loss of generality). By the
above arguments, for any u > 0 and any € > O there exists
some & = &(u) > O sufficiently large so that for all ¢ > @,

u'zP!
p-1
llzll;

It remains to be shown that for any € > 0 there exists some
& so that for all ¢ > &,

( max - |laz+ullp - ||a2||p>

llullg <21 Bllg+

u'zP!
— max ———< )l <€
lulo<AlBlle (|25

<e€.

lez+ullp— llazl, -
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We prove this as follows. Let € > 0. Choose points
{ui,...,uy} S R™ with [[u;llg=2||Bllg- Vj so that for any
ueR™ with ||ullg =A||Bllg, there exists some j so that
lu—ujll, <€/3 (note that our choice of ¢, here is inten-
tional). Now observe that for any «,

< llaz +ul,

max |lez +ujll, < max
jj [lallg=allBllg+

max max _|laz+ull,
J [lu—u;l,<e/3

max | max |lez+u;+uf,
i [lullp<e/3

IA

IA

max( max3 loz +uj|l,+ ||ﬁ||,,)

J lullp=<e/

=€/3 +mjax loz + uj]l,.

Similarly, one has for i=zP*1/||z||§’] that |maxju92

/= .
— MaX|yjg<i )l U Z| <€/3. (This uses the fact that

lZ|ly =1.) Now for each j choose &; so that for all
o > 5[]',

ez +u;llp ~ llezll, w2 < /3.

Define & = max;&;. Now observe that by combining the
above two observations, one has for any o > & that

max |laz+u|p— ||az||p> - max u'z
llullg <Al Bllg= lullg <xliBllg=
(max laez +ujll, — ||az||p> - (méax uﬁ)
j

<2¢/3+max ||az +ujll,— lazll, —u'z
i

<2€/3+

<2€/3+€/3=¢€.

Noting that max <A11Bly- u'Z= 1| Bllg llzllg concludes the
proof of (18). We now claim that

N2 g 1
= : (19)
z z|5" dm(q.p)
First note that
N2 g 1zl
pj =min pone. (20)
2z} z ||Z]lp

We prove this as follows: given z, let Z=2z""1. Then one
can show that ||Z]lp-/llz5" =1, and so ||zlly/lZll¢- =
Izll5~"/llz°~"|lq-. The converse is similar, proving (20).
Finally, note that

- lzlle- 1

z |zlly ~ Sm(pt.q)
which follows from an elementary analysis using the defini-
tion of § ». Combined with the observation that §m(p* q*) =
dm(q, p), which follows by a simply duality argument (or
by inspecting the formula), we have that (19) is proven. To
finish the argument, pick any z e argmin, ||zl"1||q*/||z||f,71.
Per (19), lzP~"l¢-/llzll5~" = 1/8m(q. p). Hence, now applying
(18), given any € > 0, there exists some « > 0 large enough
A

so that
(ﬂ%ﬁ lloz + Aﬂl|p> - <||a2||p+ 5@ D) 8 q*)

Therefore, the gap in the lower bound in (4) can be made
arbitrarily small for any 8 € R™ This concludes the proof. O

<E€.

Appendix B.

This appendix includes an example of choice of loss function
and uncertainty set under which (a) regularization is not equiva-
lent to robustification in general and (b) there exist problem in-
stances for which the regularization path and robustification path
are different. The example we give is in the vector setting for sim-
plicity, although the generalization to matrices is obvious.

In particular, let m= 2 and n= 2, and consider ¢/ =l 1, and

loss function ¢;, with y = ( ; > and X = ( (1) _11 ) In sym-
bols, the problem of interest is

min max —(X+A . B.1
tin max [y = (X+A)B]l2 (B1)

For fixed B, the objective can be rewritten exactly as

max [y - (X+ A)Bll2
Al 1)
= max [y-XB+ul;

llull <] Bll1

:max{”y—xﬂi < kllglll )

s

0
y""“( XIBI; )

)

2

£ £A
(ol G G S N
0 0
(b 7))l
=max|[ly - X+S)Bl.
cS
where S is the set of eight matrices

A EA 0 0
{( 0 0 )( 1A 4 )} The first step follows by

inspecting the definition of %4 1); the second step follows from
the convexity of ||y —XB +u|2 (in particular, the maximum of
the convex function is attained at an extreme point of {u: |juf; <
MlIBI11}); and the third step follows from the definition of the ¢,
norm. Hence, the objective is the maximum of eight modified ¢,
losses.

Let us consider A = 1/2. We claim that 8* = (1, 1) is an optimal
solution to (B.1) with objective value +/5. We will argue that 8+ is
optimal by exhibiting a dual feasible solution with the same objec-
tive value. It is easy to see that the dual (lower bounding) problem
is
’LERS:g;a}S(:sz mén; uslly — X+ 9) B2,

where there are eight variables {us:S e S}, one for each Se
S. Note that weak duality of the two problems is immediate.
Let u* be the dual feasible point with us=0 except for S; =

0 0
12 1,2

to (B.1) is
min 3 gl — (X+S)Bll2 = minfly - (X+51)Blz = V5.
S

, where we set us, = 1. Hence, a lower bound

The final step follows by calculus,

1 -1
~12 12

value +'5) must be optimal to (B.1), as claimed.

We now turn our attention to the central point of interest in
this Appendix, namely, that 8% = (1, 1) is not a solution to the cor-
responding regularization problem, viz.

Hgn ly —XBll2+ plIBll1.

using that X+S; =
. It follows that B"=(1,1) (with objective

(B.2)
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for any p € (0, oo) (cf. Proposition 4). The solution path of
(B.2) ranging over p is immediate from the proximal (soft-
thresholding) analysis of the Lasso. In particular, it is the set of
points {(3«@, 2a): « € [0, 1]}. This set does not contain g* = (1, 1),
and hence the regularization problem does not solve the robusti-
fication problem (B.1) with A =1/2 for any corresponding choice
of p. (If one does not wish to rely on such an indirect analy-
sis, note that one can solve the equivalent problem to (B.2) of
ming ||y7Xﬂ||%+ ulBll1, ranging over u € (0, o). The objec-
tive is differentiable at the point 8* = (1, 1), and the derivative is
(=24 u,0+ w). As this is never (0, 0), f* can never be optimal
to this problem, and consequently can never be optimal to (B.2).
Despite the more direct analysis, the conclusion is the same.)

To show the converse, we can use the same example. In par-
ticular, consider the solution (3/2, 1) to (B.2) (the choice of p for
which this is optimal is irrelevant for our purposes). We must
show that (3/2, 1) is never a solution to (B.1) for any choice of A.
Let us first inspect the objective of (B.1) for B* = (3/2, 1). It can be

computed to be \fl/4 + (14 5X1/2)2. We make two observations:

(1) For any 0 <A < (v19+2)/15, the point (3, 2) has strictly
smaller objective (namely, 54) than §*, and so B* is not op-
timal to (B.1) whenever A < (v19 +2)/15 ~ 0.424.

(2) Similarly, for any A > (+/31—2)/9, the point (1, 1) has strictly
smaller objective (namely, \/4)L2 +4A + 2) than B* and so B*
is not optimal to (B.1) whenever A > (+/3T —2)/9 ~ 0.396.

Because the intervals [(+/19 +2)/15, co) and [0, (+/31 — 2)/9] have
no overlap, the point 8 = (3/2, 1) cannot be a solution to (B.1) for
any choice of A.

Thus, the robustification and regularization solutions for the
problems connected via Theorem 4 do not need to coincide. The
statement of Theorem 5 follows as desired.
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